
Week 15 - Friday

 What did we talk about last time?
 Review up to Exam 2

 Format:
 Multiple choice questions (~20%)
 Short answer questions (~20%)
 Programming problems (~60%)

 Written in class
 No notes
 Closed book
 No calculator

 Designed to be 50% longer than previous exams
 But you'll have 100% more time
 Time: Friday, 12/08/2023, 2:45 - 4:45 p.m.
 Place: Point 113

To understand recursion, you must first understand recursion.

 Defining something in terms of itself
 To be useful, the definition must be

based on progressively simpler
definitions of the thing being defined

Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case

 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem

 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)!

def factorial(n):
if n <= 1:

return 1
else:

return n*factorial(n – 1)

Base Case

Recursive
Case

 Any program that uses loops can be done with recursion
 Any program that uses recursion can be done with loops
 Sometimes it's easier to use loops
 Sometimes it's easier to use recursion
 A base case is necessary in recursion to tell the process when to

stop
 This is like a condition for while loop or the amount of iteration for a for

loop
 A recursive case is necessary so that recursion can continue
 This is similar to how a loop jumps back up to the top when it gets to the

bottom

 Base case (Empty list):
 0

 Recursive case (At least one thing left in the list):
 The value of the first thing plus the sum of the rest of the list

def recursiveSum(list):
if len(list) == 0:

return 0
else:

return list[0] + recursiveSum(list[1:])

Base Case

Recursive
Case

 Use it only in special circumstances, since it's usually slower than
loops

 Recursive solutions are often impressive for how short the code is
 Some people love it, but it can be hard to think about
 Instead of trying to solve the entire problem, we think about

unwrapping one layer of the problem
 Don't think too much about what's going on in the other recursive calls

since you can't access those variables
 You usually don't want to change the values of variables with =

since that can make the recursion harder to think about

 Many natural things have recursive shapes:
 Trees
 Spiral shells
 Blood vessels
 Mountains
 Snowflakes

 Using recursion, we can draw some complex, organic-looking
shapes with only a little code

 Let's start with a simple (non-recursive) function that draws a
square with a turtle called yertle and a side length called side

 It works by going clockwise around the square
 It (importantly) returns yertle to the starting point

def drawSquare(yertle, side):
for i in range(4):

yertle.forward(side)
yertle.right(90)

 We can use the drawSquare() function repeatedly to draw
a series of nested squares with progressively smaller sides

 Base case (Side length < 1):
 Do nothing (Seems odd but is not an unusual base case)

 Base case (Side length ≥ 1):
 Draw a square with the given side length
 Continue drawing nested squares with a side length that's 5 units

smaller

 Here is that function implemented in Python:

 This function is called like any normal function:

def nestedSquares(yertle, side):
if side >= 1: # hidden base case

drawSquare(yertle, side)
nestedSquares(yertle, side - 5)

nestedSquares(someTurtle, 200)

 Squares are fine, but they're not very exciting (or very organic
looking)

 We can extend the idea into drawing a tree shape
 A tree looks kind of like a capital Y
 But then, instead of straight lines, we can replace the two

branches of the Y with smaller Y's
 And so on …
▪ And so on …

 Base case (Trunk length < 5):
 Do nothing

 Recursive case (Trunk length ≥ 5):
 Move forward trunk length
 Turn right 30°
 Draw a tree (recursively) with a trunk length 15 units shorter
 Turn left 60° (which turns back to the original heading plus another 30°)
 Draw a tree (recursively) with a trunk length 15 units shorter
 Turn right 30° (which turns back to the original heading)
 Move backward the trunk length (returning to the starting point)

 Here is that function implemented in Python:

def tree(yertle, trunkLength):
if trunkLength >= 5: # hidden base case

yertle.forward(trunkLength)
yertle.right(30)
tree(yertle, trunkLength - 15)
yertle.left(60)
tree(yertle, trunkLength - 15)
yertle.right(30)
yertle.backward(trunkLength)

'Taylor Swift'

Person object

33

'Singer'

name

age

job

State
(Instance Variables)

Code to Interact
with the State

(Methods)

getName

setAge

getJob

 The idea of an object is to group together data and code
 You have used objects a bit already
 Strings are objects
 Even lists are a special kind of object

 Encapsulation: hiding data to keep it safe
 Methods provide useful ways to interact with the data
 It's convenient to keep related data grouped together
 You could have a list of Person objects instead of three separate

lists of names, ages, and jobs

 When you have an object, you can call methods on it
 A method is like a function, except that it has access to the

details of the object
 To call a method, you type the name of the object, a dot, and

the name of the method
 A method will always have parentheses after it
 Sometimes the parentheses will have arguments that the

method uses

 You've called methods with strings:

 You've called methods on a list:

phrase = 'BOOM goes the dynamite!'
other1 = phrase.lower() # gets lowercase version
other2 = phrase.upper() # gets uppercase version
words = phrase.split() # turns to list

words.sort() # sorts the list

 Instance variables are the data inside of an object
 Like methods, you can access an instance variable with the

name of the object, a dot, and then the name of the member
 Unlike methods, instance variables never have parentheses
 They are values, not functions that do things

 Python allows us to add instance variables anytime we want
 Doing so lets us keep extra information in each object
 For example, we could give a Person object a nickname

variable after creating it

taylor = Person('Taylor Swift', 33, 'Singer')
taylor.nickname = 'Tay Tay'

 Adding instance variables is fine, but what if you want to
create an object from scratch?

 A class is a template for an object
 You can define a class that will allow you to create your own

custom objects

Person class

name

age

job

'Taylor'

33

'Singer'

name

age

job

'Biden'

80

'President'

name

age

job

'Oprah'

69

'Host'

name

age

job

 Let's look at an example class that holds information about a planet

class Planet:
def __init__(self, name, radius, mass, distance):

self.name = name
self.radius = radius
self.mass = mass
self.distance = distance

def getName(self):
return self.name

def setName(self, name):
self.name = name

 self is a reference to the object that you're currently inside
of

 If you forget to use self, you aren't talking about the current
object, you're talking about an outside variable

 The Java or C++ equivalent of self is this
 When calling a method (or the constructor), you always ignore

the self parameter
 The object itself is automatically supplied

 A constructor is a special kind of method that initializes the
values inside of an object

 It's how a new object is created
 In Python, its name is always __init__
 It takes in the initial values for the object

class Planet:
def __init__(self, name, radius, mass, distance):

self.name = name
self.radius = radius
self.mass = mass
self.distance = distance

 To create a new object, you call its constructor
 This means typing the name of the class with parentheses

after it, including the initial values for the object
 When you call the constructor, you don't pass in self!
 That happens automatically

planet1 = Planet('Jupiter', 69911, 1.9E27, 7.78E8)
planet2 = Planet('Mars', 3390, 6.4e23, 2.27E8)

 An accessor is a kind of method that gets a value out of an object
 It can read an existing value or compute a new one
 An accessor doesn't change the data inside the object

 Calling an accessor is like calling any other method on an object
 Object name, dot, then method name
 Leave off the self!

def getName(self):
return self.name

name = planet1.getName()
print(name)

 A mutator is a kind of method that sets a value in an object
 Its purpose is to change the data inside the object

 It could do some checking to make sure that a good value is
supplied

def setName(self, name):
self.name = name

planet1.setName('Jove') # new name
print(planet1.getName()) # prints Jove

 Python doesn't have a private keyword
 Instead, it uses a naming convention to hide variables
 All member variables that you want to be hidden should have

names that start with double underscore (__)
 Such variables cannot be accessed directly
 I didn't talks about data hiding before because:
 Hiding variables in Python this way is not as universal as in languages like

Java
 It makes stuff ugly to read
 It adds another layer of confusion

 If you're serious about writing object-oriented Python, you should
still do it

 Here's part of the Planet class from before, with appropriate hiding

class Planet:
def __init__(self, name, radius, mass, distance):

self.__name = name
self.__radius = radius
self.__mass = mass
self.__distance = distance

def getName(self):
return self.__name

def setName(self, name):
self.__name = name

 The example we did of the solar system was a simulation
 Using (totally unrealistic) physics

 Those kinds of simulations can be useful for scientists trying
to model behavior

 Real simulations are much more complex
 Important example: weather forecasting

 These kinds of simulations are continuous simulations
because they show the system evolving continuously as time
goes on

 Discrete event simulations are another kind of simulation
 In these, events happen at particular times
 Then, the system progresses onward after each time step,

based on what happened
 The elements of the system that can act are sometimes called

agents
 Discrete event simulations are good for modeling situations

like agents shopping, standing in line, visiting the BMV, etc.
 Another possibility is modeling an ecosystem

 Our ecosystem simulation will contain fish and bears
 They will exist on a grid
 Only one creature can exist at any location on the grid
 Each turn, one creature is randomly selected to come alive

and do actions
 Fish can breed, move, and die
 Bears can breed, move, eat, and die
 To model this simulation, we will create objects for the world,

for fish, and for bears

 The Unified Modeling Language (UML) is an
international standard for making diagrams of
software systems

 One of the most commonly used diagrams is
called a class diagram

 One standard for class diagrams has three
sections:
 Name
 Instance variables
 Methods

 To the right is an example of what that looks like

Class Name

Instance variables

Methods

 Here is a UML class diagram for the
World class

World

maxX
maxY
thingList
grid
turtle
screen

draw
getMaxX
getMaxY
addThing
deleteThing
moveThing
live
emptyLocation
lookAtLocation

 Here is a UML class diagram for the
Bear class

Bear

x
y
world
breedTick
starveTick
turtle

getX
getY
setX
setY
setWorld
appear
hide
move
live
tryToBreed
tryToMove
tryToEat

 Here is a UML class diagram for the
Fish class

Fish

x
y
world
breedTick
turtle

getX
getY
setX
setY
setWorld
appear
hide
move
live
tryToMove

 If you want to test to see if a variable has a certain type, you
can also use the isinstance() function

 It's useful for if statements
 It will also help us find out if an object is a Fish or a Bear

x = 5
if isinstance(x, int):

print("It's an int!")
else:

print("What's going on?")

 The idea of inheritance is to take one class and generate a
child class

 This child class has everything that the parent class has
(members and methods)

 But, you can also add more functionality to the child
 The child can be considered to be a specialized version of the

parent

 The key idea behind inheritance is safe code reuse
 You can use old code that was designed to, say, sort lists of
Vehicles, and apply that code to lists of Cars

 All that you have to do is make sure that Car is a subclass (or
child class) of Vehicle

 All this is well and good, but how do you actually create a
subclass?

 Let's start by writing the Vehicle class

class Vehicle:
def travel(self, destination):

print('Traveling to', destination)

 We use put the superclass name in parentheses when making a
subclass

 A Car can do everything that a Vehicle can, plus more

class Car(Vehicle):
def __init__(self, model):

self.model = model

def getModel(self):
return self.model

def startEngine(self):
print('Vrooooom!')

 There is a part of the Car class that knows all the Vehicle
members and methods

car = Car('Camry')

#prints 'Camry'
print(car.getModel())

#prints 'Vrooooom!'
car.startEngine()

#prints 'Traveling to New York City'
car.travel('New York City')

 Each Car object actually has a Vehicle
object buried inside of it

 If code tries to call a method that isn't
found in the Car class, it will look deeper
and see if it is in the Vehicle class

 The outermost method will always be
called

Car

model

getModel()
startEngine()

Vehicle

travel()

 If a class's parent has a constructor (the __init__()
method), that constructor needs to get called too
 That way, your parent gets set up correctly

 The best way to do that is to access the parent with the
super() function

 Inside a class's constructor, it should call
super().__init__()
 Inserting arguments if appropriate

 The Car class has a constructor that takes a model
 So, if we make a child class, it needs to call the parent

constructor with a model

class RocketCar(Car):
def __init__(self):

super().__init__('Rocket Car')

def fireRockets(self):
print('Rockets firing!')

 In large, object-oriented systems, it's common for there to be
many classes with many children (and grandchildren, and
great-grandchildren…)

 This kind of arrangement is called an inheritance hierarchy
 Using UML, we can draw inheritance relationships between

classes with arrows
 Although it is counterintuitive, the UML standard is for the

arrow to point from the child to the parent

 Drawing different
kinds of shapes
can be a useful
task for
inheritance

 Consider the
following
inheritance
hierarchy shown in
UML

GeometricObject

Line Point

Shape

Polygon

Rectangle Triangle

 The classes shown in the previous slide have an inheritance
relationship with GeometricShape
 The is-a relationship, since each of those shapes is a
GeometricShape

 We also need a place to draw those shapes
 We can create a Canvas class to draw them
 A Canvas is not a GeometricShape
 Instead, it provides a turtle that GeometricShape objects

can use to draw themselves

 You can't have a function (or an if statement or a loop) with
nothing in it

 For these rare circumstances, there's a special keyword that
means do nothing
 The pass keyword

def doNothing():
pass # would have errors otherwise

 Sometimes you want to do more than add
 You want to change a method to do something different
 You can write a method in a child class that has the same

name as a method in a parent class
 The child version of the method will always get called
 This is called overriding a method

 We can define the Mammal class as follows:

class Mammal:
def makeNoise(self):

print('Grunt!')

 From there, we can define the Dog, Cat, and Human subclasses,
overriding the makeNoise() method appropriately

class Dog(Mammal):
def makeNoise(self):

print('Woof')

class Cat(Mammal):
def makeNoise(self):

print('Meow')

class Human(Mammal):
def makeNoise(self):

print('Hello')

 Focus on quizzes
 Focus on assignments
 Memorizing things about Python is okay
 Practicing programming is better

 There is no next time!
 Consider visiting CodingBat.com for Python practice

 Fill out course evaluations!
 Finish Assignment 10
 Due tonight by midnight!

 Study for Final Exam
 Friday, 12/08/2023, 2:45 - 4:45 p.m.

	COMP 1800
	Last time
	Questions?
	Assignment 10
	Review
	Final Exam
	Final exam
	Recursion
	What is Recursion?
	Useful Recursion
	Approach for Problems
	Implementing Factorial
	Code for Factorial
	Recursion and loops are the same
	Adding up the numbers in a list
	Code for Sum
	Tips for recursion
	Drawing Recursively
	Complex shapes
	Drawing squares
	Nested squares
	Nested squares function
	Trees
	Recursion for tree drawing
	Tree function
	Objects in Python
	What's an object?
	Objects
	Why are objects a good idea?
	Calling methods
	Method call examples
	Instance variables
	Adding members
	Creating entirely new classes
	Classes are like blueprints
	Planet class
	What is self?
	Constructor
	Creating a new object
	Accessors
	Mutators
	Hiding data in Python
	Hiding example
	Simulation
	Continuous simulations
	Discrete event simulations
	Ecosystem
	UML
	Class diagram for World
	Class diagram for Bear
	Class diagram for Fish
	isinstance()
	Inheritance
	Inheritance
	Code reuse	
	Creating a subclass
	Extending a superclass
	Power of inheritance
	A look at a Car
	Calling the parent constructor
	Parent example
	Inheritance hierarchies
	Shapes
	Drawing shapes
	One final bit of Python syntax
	Adding to existing classes is nice…
	Mammal example
	Mammal subclasses
	Studying Advice
	Studying advice
	Upcoming
	Next time…
	Reminders

